(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
length(nil) → 0
length(cons(X, L)) → s(length(L))
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
The TRS R 2 is
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
The signature Sigma is {
eq,
true,
false}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(X), s(Y)) → EQ(X, Y)
INF(X) → INF(s(X))
TAKE(s(X), cons(Y, L)) → TAKE(X, L)
LENGTH(cons(X, L)) → LENGTH(L)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(X, L)) → LENGTH(L)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(X, L)) → LENGTH(L)
R is empty.
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(X, L)) → LENGTH(L)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(cons(X, L)) → LENGTH(L)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(s(X), cons(Y, L)) → TAKE(X, L)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(s(X), cons(Y, L)) → TAKE(X, L)
R is empty.
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(s(X), cons(Y, L)) → TAKE(X, L)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TAKE(s(X), cons(Y, L)) → TAKE(X, L)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INF(X) → INF(s(X))
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INF(X) → INF(s(X))
R is empty.
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INF(X) → INF(s(X))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
INF(
X) →
INF(
s(
X)) we obtained the following new rules [LPAR04]:
INF(s(z0)) → INF(s(s(z0)))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INF(s(z0)) → INF(s(s(z0)))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
INF(
s(
z0)) →
INF(
s(
s(
z0))) we obtained the following new rules [LPAR04]:
INF(s(s(z0))) → INF(s(s(s(z0))))
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INF(s(s(z0))) → INF(s(s(s(z0))))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
INF(
s(
s(
z0))) evaluates to t =
INF(
s(
s(
s(
z0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [z0 / s(z0)]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from INF(s(s(z0))) to INF(s(s(s(z0)))).
(31) NO
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(X), s(Y)) → EQ(X, Y)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(33) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(X), s(Y)) → EQ(X, Y)
R is empty.
The set Q consists of the following terms:
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(35) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq(x0, x1)
inf(x0)
take(0, x0)
take(s(x0), cons(x1, x2))
length(nil)
length(cons(x0, x1))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(X), s(Y)) → EQ(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EQ(s(X), s(Y)) → EQ(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(38) YES